Analysis of probiotic genes of Lactobacillus kefiranofaciens subsp. kefiranofaciens ZW18

LI Xinyuan, YANG Fengyan, LV Houjiao, GENG Weitao, WANG Yanping

China Brewing ›› 2023, Vol. 42 ›› Issue (12) : 62-69.

PDF(3817 KB)
PDF(3817 KB)
China Brewing ›› 2023, Vol. 42 ›› Issue (12) : 62-69. DOI: 10.11882/j.issn.0254-5071.2023.12.010

Analysis of probiotic genes of Lactobacillus kefiranofaciens subsp. kefiranofaciens ZW18

  • LI Xinyuan, YANG Fengyan, LV Houjiao, GENG Weitao, WANG Yanping*
Author information +
History +

Abstract

As a new food raw material, Lactobacillus kefiranofaciens subsp. kefiranofaciens has many probiotic properties, and the basic characteristics and probiotic functional genes of L. kefiranofaciens subsp. kefiranofaciens ZW18 were analyzed by whole genome sequencing. The results showed that the strain was composed of a circular chromosome and two plasmids with a total length of about 2.4 Mbp, had more unique genes and characteristics.According to the database annotation, the strain ZW18 had good survival ability and stability, and strong carbohydrates utilization ability, which ensured the material basis and energy supply of bacterial cells. The genome of the strain ZW18 contained genes related to oxidative stress resistance, acid resistance and bile salt resistance, adhesion and aggregation, immunity, bacteriocin, etc., and genes related to various vitamins such as thiamine and riboflavin, and amino acids required by the human body such as lysine and methionine, indicating that it had a variety of potential probiotic properties, providing basic data for further research and application.

Key words

Lactobacillus kefiranofaciens subsp. kefiranofaciens / genome / probiotic properties

Cite this article

Download Citations
LI Xinyuan, YANG Fengyan, LV Houjiao, GENG Weitao, WANG Yanping. Analysis of probiotic genes of Lactobacillus kefiranofaciens subsp. kefiranofaciens ZW18[J]. China Brewing, 2023, 42(12): 62-69 https://doi.org/10.11882/j.issn.0254-5071.2023.12.010

References

[1] 毛友辉,朱薇,邓放明,等. 益生菌的研究进展及其在食品中的应用[J]. 现代生物医学进展,2011,11(20):3978-3980,3977.
[2] 孙雪姣,王一然,丁瑞雪,等. 益生菌火龙果酸奶的研发[J]. 食品研究与开发,2018,39(19):99-103.
[3] TORRES-MARAVILLA E, LENOIR M, MAYORGA-REYES L, et al.Identification of novel anti-inflammatory probiotic strains isolated from pulque[J]. Appl Microbiol Biotechnol, 2016, 100: 385-396.
[4] 周莉,平洋,谭静,等. 益生菌中乳酸菌概况及检测技术的研究进展[J]. 中国调味品,2019,44(10):190-194.
[5] 王怡明. 乳酸菌及其生物工程研究新进展[J]. 科技风,2022(10):152-154.
[6] 弥超,高维东,王玉,等. 益生菌的功能研究及其在功能性食品中的应用[C]//中国营养学会,中国疾病预防控制中心营养与健康所,农业农村部食物与营养发展研究所,中国科学院上海营养与健康研究所,华中科技大学公共卫生学院. 中国营养学会第十五届全国营养科学大会论文汇编,2022:534.
[7] 段晓微. 马乳酒样乳杆菌ZW3高密度培养及抗过敏功能的初步研究[D]. 天津:天津科技大学,2019.
[8] 国家卫生健康委. 关于蝉花子实体(人工培植)等15种“三新食品”的公告2020年第9号[J]. 中国食品卫生杂志,2021,33(1):68.
[9] 王艳萍,严婷,王亚琦,等. 马乳酒样乳杆菌马乳酒样亚种及其研究进展[J]. 微生物学报,2022,62(2):414-420.
[10] XING Z Q, TANG W, YANG Y, et al.Colonization and gut flora modulation of Lactobacillus kefiranofaciens ZW3 in the intestinal tract of mice[J]. Probiotics Antimicro, 2018, 10: 374-382.
[11] SUN Y, GENG W T, PAN Y J, et al.Supplementation with Lactobacillus kefiranofaciens ZW3 from Tibetan Kefir improves depression-like behavior in stressed mice by modulating the gut microbiota[J]. Food Funct, 2019, 10(2): 925-937.
[12] 余中节,赵洁,宋宇琴,等. 全基因组关联分析在乳酸菌研究中的应用[J]. 中国食品学报,2019,19(10):307-314.
[13] PASOLLI E, DE FILIPPIS F, MAURIELLO I E, et al.Large-scale genome-wide analysis links lactic acid bacteria from food with the gut microbiome[J]. Nat Commun, 2020, 11(1): 2610.
[14] 张彦位,杨玲,路江浩,等. 乳酸菌全基因组测序的应用进展[J]. 食品工业科技,2022,43(15):444-450.
[15] HYATT D, CHEN G L, LOCASCIO P F, et al.Prodigal: prokaryotic gene recognition and translation initiation site identification[J]. BMC Bioinformatics, 2010, 11(1): 119.
[16] NAWROCKI E P, EDDY S R.Infernal 1.1: 100-fold faster RNA homology searches[J]. Bioinformatics, 2013, 29(22): 2933-2935.
[17] CHAN P P, LOWE T M. tRNAscan-SE: Searching for tRNA genes in genomic sequences[J]. Methods Mol Biol, 2019, 1962: 1-14.
[18] KRZYWINSKI M, SCHEIN J, BIROL I, et al.Circos: An information aesthetic for comparative genomics[J]. Genome Res, 2009, 19(9): 1639-1645.
[19] 李海燕,胡梦蝶,刘洋,等. 谷氨酸棒杆菌中烷基过氧化物还原酶(CgAhp)抵御环境胁迫的作用机制[J]. 曲阜师范大学学报(自然科学版),2022,48(4):101-108.
[20] 方丽. 大肠杆菌DNA结合蛋白克隆表达纯化及体外自组装功能研究[D]. 淄博:山东理工大学,2014.
[21] 段希宇,叶陵,刘成国,等. 乳酸菌的抗氧化作用机制[J]. 微生物学杂志,2017,37(3):111-115.
[22] 朱桐,薛原野,李欣桐,等. 去乙酰化酶SIRT7在细胞衰老中的研究进展[J]. 安徽医学,2021,42(11):1314-1317.
[23] 熊涛,刘妍妍,黄涛,等. 副干酪乳杆菌NCU622耐酸耐胆盐及其黏附性能[J]. 食品科学,2015,36(5):93-98.
[24] 张阳玲. 酸胁迫下乳酸乳球菌细胞壁相关基因调控机制研究[D]. 天津:天津大学,2020.
[25] 徐宁,程海娇,刘清岱,等. 细菌Na+/H+逆向转运蛋白的研究进展[J]. 微生物学通报,2015,42(10):2002-2011.
[26] 杨玲双,谢新强,李滢,等. 屎肠球菌132胆盐水解酶基因的克隆表达与酶学特性[J]. 现代食品科技,2022,38(8):35-43.
[27] 周铄浛,杨柳,安彬,等. 乳酸菌体外黏附性方法的评价及相关性研究[J]. 食品科技,2020,45(8):20-28.
[28] 王思淼,魏晓,赵向娜,等. 长双歧杆菌NCC2705纯化蛋白烯醇化酶、Tuf蛋白的黏附作用研究[J]. 军事医学,2014,38(5):333-336.
[29] 武琪,张玉娟,刘桐,等. 牛支原体黏附素及黏附素结合蛋白研究进展[J]. 畜牧兽医学报,2023(8):3206-3216.
[30] 石晓璐,张英春,张兰威,等. 乳酸杆菌S-层蛋白的特性及功能性研究进展[J]. 微生物学通报,2017,44(5):1206-1213.
[31] 劳立峰,吴振,潘道东. 罗伊氏乳杆菌SH23中LPxTG表面蛋白的原核表达及其抗炎特性研究[C]//中国食品科学技术学会. 第十六届益生菌与健康国际研讨会摘要集,2021:18.
[32] 吕秀莉,岳莹雪,平丽筠,等. 益生菌黏附机制及其拮抗肠道致病菌研究进展[J]. 食品科学,2023,44(9):313-320.
[33] 唐曼玉,王晚晴,强敬雯,等. 益生菌与肠道菌群、免疫调节的相互作用与机制研究进展[J]. 食品工业科技,2022,43(16):486-493.
[34] 任效东. 益生菌分泌的胞外蛋白与肠道粘膜免疫关系的研究进展[J]. 农技服务,2016,33(3):109.
[35] ZHAO J Q, WANG Y P, WANG J R, et al.Lactobacillus kefiranofaciens ZW18 from Kefir enhances the anti-tumor effect of anti-programmed cell death 1 (PD-1) immunotherapy by modulating the gut microbiota[J]. Food Funct, 2022, 13(19): 10023-10033.
[36] 滕坤玲,钟瑾. 益生菌产生的细菌素及其功能机制[J]. 微生物学报,2022,62(3):858-868.
[37] 孔维溧,芦鑫荣,侯琳琳,等. 维生素与免疫系统健康[J]. 四川大学学报(医学版),2023,54(1):7-13.
[38] 盛勤芳. 人体内八种必需氨基酸的初步探究及其意义[J]. 科技视界,2014(28):239.
[39] SAULNIER D M, SANTOS F, ROOS S, et al.Exploring metabolic pathway reconstruction and genome-wide expression profiling in Lactobacillus reuteri to define functional probiotic features[J]. PloS one, 2011, 6(4): e18783.
PDF(3817 KB)

140

Accesses

0

Citation

Detail

Sections
Recommended

/