Optimization of immobilized conditions of yeast protease by porous chitosan and analysis of its enzymatic properties

YAO Xiaoruining1, GAO Feifei1, WANG Bin1, XIAO Jing2, JIA Chenkun1, WANG Shunli3, SHI Xuewei1*

China Brewing ›› 2017, Vol. 36 ›› Issue (1) : 146-150.

PDF(1751 KB)
PDF(1751 KB)
China Brewing ›› 2017, Vol. 36 ›› Issue (1) : 146-150. DOI: 10.11882/j.issn.0254-5071.2017.01.031

Optimization of immobilized conditions of yeast protease by porous chitosan and analysis of its enzymatic properties

Author information +
History +

Abstract

The yeast protease was immobilized by porous chitosan microspheres. The glutaraldehyde content, adsorption time, immobilization temperature and pH were determined by single factor and orthogonal experiments. Using the protease activity recovery as evaluation index, the immobilized conditions were as follows: glutaraldehyde content 1.4%, adsorption temperature 27 ℃, pH 10 and adsorption time 24 h. Under the optimal conditions, the recovery rate of immobilized yeast protease activity was 68.8%. The results of enzymatic properties analysis showed that the optimum reaction temperature of immobilized enzyme was 10 ℃ higher than that of free enzyme, and its optimal pH moved to alkaline direction by 1 pH unit compared with the free enzyme. Therefore, embedding of yeast protease by porous chitosan could improve the protease activity.

Key words

porous chitosan / protease / immobilization / enzymatic properties

Cite this article

Download Citations
YAO Xiaoruining1, GAO Feifei1, WANG Bin1, XIAO Jing2, JIA Chenkun1, WANG Shunli3, SHI Xuewei1*. Optimization of immobilized conditions of yeast protease by porous chitosan and analysis of its enzymatic properties[J]. China Brewing, 2017, 36(1): 146-150 https://doi.org/10.11882/j.issn.0254-5071.2017.01.031

References

[1] MA J F, ZHANG L H, LIANG Z. Immobilized enzyme reactors in proteomics[J]. Trend Anal Chem, 2011, 30(5): 691-702.
[2] 韩志萍, 叶剑芝, 罗荣琼. 固定化酶的方法及其在食品中的应用研究进展[J]. 保险与加工, 2012, 12(5): 48-53.
[3] 段 玮. 壳聚糖微球的制备及其固定化酶的研究[D]. 长沙: 湖南师范大学, 2012.
[4] 徐慧静,谭亚军. 脯氨酰内肽酶的固定化研究[J]. 中国酿造,2012, 31(4): 118-121.
[5] 梁足培, 冯亚青, 孟舒献, 等. 壳聚糖及其衍生物在固定化酶中的应用进展[J]. 中国海洋药物, 2004, 23(4): 39-42.
[6] 钟方旭, 张 弦,李春美. 多孔壳聚糖微球固定化碱性蛋白酶的研究[J]. 食品科技, 2008, 39(3): 49-53.
[7] 李晓静, 侯俊才, 江连州, 等. 海藻酸钠-壳聚糖固定化胃蛋白酶的研究[J]. 食品工业科技, 2014, 35(1): 168-173.
[8] 董正伟, 朱芳莹, 朱文渊, 等. 转氨酶的固定化及酶学性质研究[J]. 发酵科技通讯, 2016, 45(2): 81-87.
[9] 王胜男, 江连洲, 李 杨, 等. 海藻酸钠固定化碱性蛋白酶制备及酶学性质的研究[J]. 食品工业科技, 2012, 33(17): 166-170.
[10] 王 冕, 王如福, 焦玉双. 海藻酸钠-阿拉伯胶固定化糖化酶及其性质的研究[J]. 中国酿造, 2015, 34(3): 24-29.
[11] 孟廷廷, 马海乐, 王微微, 等. 固定化碱性蛋白酶酶解酪蛋白的研究[J]. 中国食品学报, 2016, 16(8): 87-93.
[12] 师广波, 马艳芳, 郑明刚, 等. 壳聚糖固定化风味蛋白酶的制备及其酶学特性[J]. 食品科学技术学报, 2015, 33(4): 27-32.
[13] NAGANAGOUDA K. Gelatin blends with alginate: gel fibers for α-galactosidase immobilization and its application in reduction of non-di-gestible oligosaeeharides[J]. Process Biochem, 2005, 41(8): 1903-1907.
[14] 张莉娟. 脲酶的组合固定化研究[D]. 武汉: 武汉理工大学, 2012.
[15] CHELLAPANDIAN M, SASTRY C A. Immobilization of alkaline protease on nylon[J]. Bioproc Biosyst Eng, 1994, 11(1): 17-21.
PDF(1751 KB)

387

Accesses

0

Citation

Detail

Sections
Recommended

/