
Ethanol production with xylose fermentation by filamentous fungi
SHI Zhuo1, LI Qingming1,2, XIONG Xingyao3, WEN Qian1, HU Qiulong2, SU Xiaojun1,2*
China Brewing ›› 2014, Vol. 33 ›› Issue (11) : 47-50.
Ethanol production with xylose fermentation by filamentous fungi
Fermentation of lignocelluloses for ethanol production has become a research focus, with special emphasis on the study of microorganism for fermenting xylose to ethanol. Several filamentous fungi which can use xylose for ethanol production and the application of genetic engineering technology in the study were introduced in this paper. In addition, the research prospect was discussed.
filamentous fungi / fermentation / xylose / ethanol {{custom_keyword}} /
[1] 黄 进,夏 清,郑 化. 生物质化工与生物质材料[M]. 北京:化学工业出版社,2009.
[2] 张继泉,王瑞明,孙玉英. 利用木质纤维素生产燃料酒精的研究进展[J]. 酿酒科技,2003(1):39-42.
[3] 李学凤,田 沈,潘亚平,等. 发酵五碳糖和六碳糖产乙醇的细菌研究进展[J]. 微生物学报,2003,30(6):101-105.
[4] 余紫苹,彭 红,林 妲,等. 植物半纤维素结构研究进展[J]. 高分子通报,2011,1(6):48-54.
[5] 胡海军,葛向阳,梁运祥. 一株中型假丝酵母发酵木糖产乙醇的特性研究[J]. 微生物学通报,2008,35(10):1511-1515.
[6] 邹 根,刘 睿,魏勇军,等. 木质纤维素酶基因资源挖掘及真菌酶系改造[J]. 生物加工过程,2014(1):63-71.
[7] 钟耀华,钱远超,任美斌,等. 丝状真菌降解转化纤维素的机制与遗传改良前景[J]. 生物加工过程,2014(1):46-54.
[8] 林良才,李金根,王 邦,等. 粗糙脉孢菌木质纤维素降解利用研究进展[J]. 生物加工过程,2014,12(1):28-36.
[9] 张 潇,朱冬青,王 丹,等. 粗糙脉孢菌木糖发酵的研究[J]. 微生物学报,2003,43(4):466-472.
[10] 周德庆. 微生物学教程[M]. 第二版. 北京:高等教育出版社,2002.
[11] 张 颖,马瑞强,洪浩舟,等. 微生物木糖发酵产乙醇的代谢工程[J]. 生物工程学报,2010,26(10):1436-1443.
[12] HAHN-H?魧GERDAL B, KARHUMAA K, FONSECA C, et al. Towards industrial pentose-fermenting yeast strains[J]. Appl Microbiol Biotechnol, 2007, 74(5): 937-953.
[13] 贺应龙,熊兴耀,苏小军. 五碳糖发酵生产乙醇的菌种研究[J]. 中国酿造,2010,29(4):8-11.
[14] ZALDIVAR J, NIELSEN J, OLSSON L. Fuel ethanol production from lignocellulose:a challenge for metabolic engineering and process integration[J]. Appl Microbiol Biotechnol, 2001, 56(1-2): 17-34.
[15] G?魳RIO F M, FONSECA C, CARVALHEIRO F, et al. Hemicelluloses for fuel ethanol: A review[J]. Bioresource Technol, 2010, 101(13): 4775-4800.
[16] LIANG X H, HUA D L, WANG Z X, et al. Production of bioethanol using lignocellulosic hydrolysate by the white rot fungus Hohenbuehelia sp.ZW-16[J]. Ann Microbiol, 2013, 63(2): 719-723.
[17] 黄 艳,覃拥灵,凌 敏,等. 不同碳源诱导康氏木霉产纤维素酶的研究[J]. 中国酿造,2008,27(15):41-43.
[18] SUN Y, CHENG J Y. Hydrolysis of lignocellulosic materials for ethanolproduction:a review[J]. Bioresource Technol, 2002, 83(1): 1-11.
[19] HASPER A A, VISSER J, DE GRAAFF L H. The Aspergillus niger transcriptional activator XlnR, which is involved in the degradation of the polysaccharides xylan and cellulose, also regulates D-xylose reductase gene expression[J]. Mol Microbiol, 2002, 36(1): 193-200.
[20] ZHANG Z H, QU Y B, ZHANG X, et al. Effects of oxygen limitation on xylose fermentation, intracellular metabolites, and key enzymes of Neurospora crassa AS3.1602[J]. Appl Biochem Biotechnol, 2008, 145(1-3): 39-51.
[21] 黄 茜,黄凤洪,江木兰,等. 木质素降解菌的筛选及混合菌发酵降解秸秆的研究[J]. 中国生物工程杂志,2008,28(2):66-70.
[22] RUIZ E, ROMERO I, MOYA M, et al. Sugar fermentation by Fusarium oxysporum to produce ethanol[J]. World J Microbiol Biotechnol, 2007, 23(2): 259-267.
[23] 金 花,陆 军,李 涛,等. 麦秆水解液发酵生产燃料乙醇的研究[J]. 酿酒科技,2007(12):25-27.
[24] OKAMOTO K, KANAWAKU R, MASUMOTO M, et al. Efficient xylose fermentation by the brown rot fungus Neolentinus lepideus[J]. En-zyme Microb Tech, 2012, 50(2): 96-100.
[25] DOGARIS I, VAKONTIOS G, KALOGERIS E, et al. Induction of cellulases and hemicellulases from Neurospora crassa under solid-state cultivation for bioconversion of sorghum bagasse into ethanol[J]. Ind Crop Prod, 2009, 29(2-3): 404-411.
[26] LI J G, LIN L C, LI H Y, et al. Transcriptional comparison of the filamentous fungus Neurospora crassa growing on three major monosaccharides D-glucose, D-xylose and L-arabinose[J]. Biotechnol Biofuels, 2014, 31(7): 1-15.
[27] 范金霞,杨 谦,陈忠祥,等. 尖孢镰刀菌发酵混合糖产乙醇[J]. 东北林业大学学报,2010,38(9):113-115.
[28] 范金霞,杨 谦. 木糖发酵产乙醇微生物研究进展[J]. 西南林学院学报,2009,29(5):90-93.
[29] 范金霞,李文哲,郑国香,等. 稀酸水解抑制物对尖孢镰刀菌生长与乙醇发酵的影响[J]. 农业机械学报,2014,45(5):155-159.
[30] 范金霞,黄晓梅,张炳秀. 尖孢镰刀菌乙醛脱氢酶基因的特征分析[J]. 基因组学与应用生物学,2014,33(2):260-265.
[31] 洪解放,张敏华,刘 成,等. 代谢木糖生产乙醇的基因工程菌研究进展[J]. 食品与发酵工业,2005,31(1):114-118.
[32] ZHA J, SHEN M H, HU M L, et al. Enhanced expression of genes involved in initial xylose metabolism and the oxidative pentose phosphate pathway in the improved xylose-utilizing Saccharomyces cerevisiae through evolutionary engineering[J]. J Ind Microbial Biotechnol, 2014, 41(1):27-39.
[33] 李伟丽,李海燕,李 良,等. 热休克蛋白增加大肠杆菌抗逆性和乙醇产量的研究[J]. 生物技术,2008,18(5):54-58.
[34] SALOHEIMO A, RAUTA J, STASYK O V, et al. Xylose transport studies with xylose-utilizing Saccharomyces cerevisiae strains expressing heterologous and homologous permeases[J]. Appl Microbiol Biotechnol, 2007, 74(5): 1041-1052.
[35] ANASONTZISA G E, ZERVA A, STATHOPOULOU P M, et al. Homologous overexpression of xylanase in Fusarium oxysporum increases ethanol productivity during consolidated bioprocessing (CBP) of lignocellulosics[J]. J Biotechnol, 2011, 152(1-2):16-23.
/
〈 |
|
〉 |