该研究以具有耐盐碱、防病、促生的复合微生物菌剂为研究对象,采用单因素试验和正交试验对复合微生物菌剂种子、发酵培养基成分及发酵工艺进行优化,以复合菌剂生物量(OD600 nm值)、固氮量、解钾量、溶有机磷量、溶无机磷量和抑菌率为考察指标,采用Topsis综合评价法确定最佳培养条件。结果表明,复合微生物菌剂最适种子培养基为2%酵母浸出膏、1%乳糖、1% MgSO4;最适发酵培养基为0.1%豆饼粉、1.5%玉米浆、1.5% CaCl2;最佳发酵工艺为pH 6、接种量9%、转速180 r/min、发酵温度35 ℃、发酵时间35 h。此优化发酵条件下,复合菌剂的OD600 nm值为1.38、固氮量为0.23 g/L、解钾量为101.00 mg/L、溶有机磷量为504.54 μg/mL、溶无机磷量为658.82 μg/mL、抑菌率为60.97%。
Abstract
Using the compound microbial agent with saline-alkali resistance, disease prevention and growth promotion as the research object, the composite microbial agent, fermentation medium composition and fermentation process were optimized by single factor tests and orthogonal tests. The biomass of compound microbial agent, the amount of nitrogen fixed, potassium solubilized, organic phosphorus solubilized, inorganic phosphorus solubilized and bacteria inhibitive rate were used as the investigation indexes. Topsis comprehensive evaluation method was used to determine the optimal culture conditions. The results showed that the optimal seed medium for the compound microbial agent was yeast extract 2%, lactose 1%, MgSO4 1%. The optimal fermentation medium was soybean cake powder 0.1%, corn pulp 1.5% and CaCl2 1.5%. The optimum fermentation process were as follows: pH 6, inoculum 9%, rotation speed 180 r/min, fermentation temperature 35 ℃ and time 35 h. Under these optimal conditions, the OD600 nm value of compound bacteria was 1.38, the amount of nitrogen fixed, potassium solubilized, organic phosphorus solubilized and inorganic phosphorus solubilized was 0.23 g/L, 101.00 mg/L, 504.54 μg/ml and 658.82 μg/ml, respectively, and bacteria inhibitive rate was 60.97%.
关键词
耐盐碱微生物 /
生防菌 /
复合微生物菌剂 /
发酵工艺 /
培养基 /
优化
{{custom_keyword}} /
Key words
saline-tolerant microorganisms /
microbial antagonist /
compound microbial agent /
fermentation process /
medium /
optimization
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] OLANREWAJU O S, AYILARA M S, AYANGBENRO A S, et al.Genome mining of three plant growth-promoting Bacillus species from maize rhizosphere[J]. Appl Biochem Biotechnol, 2021, 193(12): 3949-3969.
[2] HASAN N, KHAN I U, FARZAND A, et al.Bacillus altitudinis HNH7 and Bacillus velezensis HNH9 promote plant growth through upregulation of growth-promoting genes in upland cotton[J]. J Appl Microbiol, 2022, 132(5): 3812-3824.
[3] 周静,黄文茂,秦利军,等. 四株PGPR菌株混菌发酵体系的构建及促生效应评价[J]. 生物技术通报,2021,37(4):116-126.
[4] TSUDA K, TSUJI G, HIGASHIYAMA M, et al.Biological control of bacterial soft rot in Chinese cabbage by Lactobacillus plantarum strain BY under field conditions[J]. Biol Control, 2016, 100: 63-69.
[5] ROMERA F J, GARCÍA M J, LUCENA C, et al. Induced systemic resistance (ISR) and Fe deficiency responses in dicot plants[J]. Front Plant Sci, 2019, 10: 287.
[6] ARORA N K, FATIMA T, MISHRA J, et al.Halo-tolerant plant growth promoting rhizobacteria for improving productivity and remediation of saline soils[J]. J Adv Res, 2020, 26: 69-82.
[7] 王海霞,郑成忠,东保柱,等. 燕麦内生细菌YN-J3的分离鉴定及防病促生作用研究[J]. 中国生物防治学报,2022,38(2):447-457.
[8] DENG L, WANG T, LUO W, et al.Effects of a compound microbial agent and plants on soil properties, enzyme activities, and bacterial composition of Pisha sandstone[J]. Environ Sci Pollut Res, 2021, 28(38): 53353-53364.
[9] 王继雯,岳丹丹,赵俊杰,等. 两株芽孢杆菌混菌发酵产芽孢条件的优化[J]. 中国酿造,2017,36(5):95-99.
[10] MANDER P, CHOI Y H, SEONG J H, et al.Statistical optimization of a multivariate fermentation process for enhancing antibiotic activity of Streptomyces sp. CS392[J]. Arch Pharmacal Res, 2013, 36: 973-980.
[11] XIA S, LIN R, CUI X, et al.The application of orthogonal test method in the parameters optimization of PEMFC under steady working condition[J]. Int J Hydrogen Energy, 2016, 41(26): 11380-11390.
[12] 李彩联,郭艳丽,张铁鹰,等. 高产漆酶菌株的筛选、鉴定和固态发酵条件优化[J]. 动物营养学报,2021,33(11):6501-6509.
[13] 黎燕珊,崔文艳,张陈芳,等. 抗金银花白粉病菌贝莱斯芽孢杆菌HC-8菌株培养基及发酵条件优化[J]. 南方农业学报,2021,52(8):2148-2157.
[14] CHEN Z M, LI Q, LIU H M, et al.Greater enhancement of Bacillus subtilis spore yields in submerged cultures by optimization of medium composition through statistical experimental designs[J]. Appl Microbiol Biotech, 2010, 85(5): 1353-1360.
[15] 胡炎,杨帆,杨宁,等. 盐碱地资源分析及利用研究展望[J]. 土壤通报,2023,54(2):489-494.
[16] 刘印来,王国动. 番茄根腐病的发生与防治[J]. 吉林农业,2016(8):97.
[17] 李盼亮. 我国蔬菜根部病原镰孢菌鉴定和新病害发现[D]. 北京:中国农业科学院,2018.
[18] 李捷,冯丽丹,王有科,等. 甘肃枸杞镰孢菌根腐病病原鉴定及优势病原菌生物学特性[J]. 干旱区研究,2017,34(5):1093-1100.
[19] 李雪萍,张怡忻,李建军,等. 兰州百合防病促生细菌筛选及其效果评价[J]. 中国生物防治学报,2022,38(5):1296-1307.
[20] 许世洋,范雨轩,汪学苗,等. 辣椒镰孢根腐病防病促生细菌的筛选及其效应[J]. 微生物学报,2022,62(7):2735-2750.
[21] 上官玲玲,卢慧芳,张辉燕,等. 基于响应面法优化谷氨酸棒杆菌发酵条件[J]. 中国酿造,2023,42(3):202-208.
[22] 韦宜慧,陈嘉琪,董玉红,等. 杉木人工林土壤溶磷细菌筛选及培养条件优化[J]. 林业科学研究,2020,33(4):83-91.
[23] AHSAN T, LIANG C, YU S, et al.Screening and optimization of fermentation medium for Bacillus velezensis BP-1 and its biocontrol effects against Peyronellaea arachidicola[J]. Appl Sci, 2023, 13(8): 4653.
[24] 邱露,彭帅英,李昆太. 发酵乳杆菌C6全细胞催化剂的制备及产D-塔格糖催化条件优化[J]. 中国酿造,2023,42(3):179-186.
[25] TIAN Z, HOU L, HU M, et al.Optimization of sporulation conditions for Bacillus subtilis BSNK-5[J]. Processes, 2022, 10(6): 1133.
[26] PENG Y, HE Y, WU Z, et al.Screening and optimization of low-cost medium for Pseudomonas putida Rs-198 culture using RSM[J]. Brazil J Microbiol, 2014, 45: 1229-1237.
[27] 李春雨,杨棒棒,周佳,等. 红杆菌NBS58-1产胞外多糖发酵条件优化及其保湿性研究[J]. 中国酿造,2022,41(11):155-160.
[28] COTÂRLEŢ M, MAFTEI N M, BAHRIM G E. Increasing the fermentation efficiency of Lactobacillus paracasei ssp. paracasei MIUG BL6 in a rye flour sourdough[J]. Turkish J Biochem, 2019, 44(3): 307-315.
[29] 杨晓蕾,李建宏,姚拓,等. 复合促生菌剂发酵条件优化及其对青稞促生效果评价[J]. 草地学报,2022,30(1):212-219.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}
基金
甘肃省农业科学院重点研发计划(2023GAAS22); 甘肃省现代农业科技支撑体系区域创新中心重点科技项目(2022GAAS02)
{{custom_fund}}