非酿酒酵母在发酵过程中的代谢产物对葡萄酒质量的影响

王凤梅1,马利兵2*

中国酿造 ›› 2016, Vol. 35 ›› Issue (12) : 12-17.

PDF(712 KB)
PDF(712 KB)
中国酿造 ›› 2016, Vol. 35 ›› Issue (12) : 12-17. DOI: 10.11882/j.issn.0254-5071.2016.12.003
专论与综述

非酿酒酵母在发酵过程中的代谢产物对葡萄酒质量的影响

作者信息 +

Effect of metabolites produced by non-Saccharomyces during fermentation on the quality of wine

Author information +
文章历史 +

摘要

非酿酒酵母广泛存在于葡萄园及酿酒环境中,虽然其在发酵过程中能产生各种异味物质影响酒的品质,但某些非酿酒酵母的代谢产物却能增强葡萄酒的香气、风味和复杂性。该文综述了非酿酒酵母在发酵过程中的代谢产物及其对葡萄酒质量的影响,以期对我国筛选非酿酒酵母用于生产具地区特色的葡萄酒提供参考。

Abstract

Non-Saccharomyces widely exists in the vineyard and winemaking environment. In the process of fermentation, non-Saccharomyces can produce a variety of odor substances which affect the wine quality. However, some metabolites produced by non-Saccharomyces can enhance the specific aroma, flavor and complexity of wine. The metabolites of non-Saccharomyces, as well as the effect of their metabolites on the quality of wine were summarized, in order to provide theoretical and technical reference for screening non-Saccharomyces for production of wine with regional characteristics.

关键词

非酿酒酵母 / 代谢产物 / 风味 / 香气

Key words

non-Saccharomyces / metabolite / flavor / aroma

引用本文

导出引用
王凤梅1,马利兵2*. 非酿酒酵母在发酵过程中的代谢产物对葡萄酒质量的影响[J]. 中国酿造, 2016, 35(12): 12-17 https://doi.org/10.11882/j.issn.0254-5071.2016.12.003
WANG Fengmei1, MA Libing2*. Effect of metabolites produced by non-Saccharomyces during fermentation on the quality of wine[J]. China Brewing, 2016, 35(12): 12-17 https://doi.org/10.11882/j.issn.0254-5071.2016.12.003

参考文献

[1] CRAY J A, BELL A N W, BHAGANNA P, et al. The biology of habitat dominance; can microbes behave as weeds[J]. Microb Biotechnol, 2013, 6(5): 453-492.
[2] ALMUDENA C, ISABEL L C, PANEQUE P. Diversity of Saccharomyces and non-Saccharomyces yeasts in three red grape varieties cultured in the Serranía de Ronda (Spain) vine-growing region[J]. Int J Food Microbiol, 2010, 143 (3):241-245.
[3] VARELA C, SIEBERT T, COZZOLINO D, et al. Discovering a chemical basis for differentiating wines made by fermentation with 'wild' indigenous and inoculated yeasts: role of yeast volatile compounds[J]. Aust J Grape Wine Res, 2009, 15(3): 238-248.
[4] KURTZMAN C P, FELL J W, BOEKHOUT T. Definition, classification and nomenclature of the yeasts[M]. Amsterdam: Elsevier Science Publishers, 2011: 3-5.
[5] KURTZMAN C P, FELL J W, BOEKHOUT T, et al. Methods for isolation, phenotypic characterization andmaintenance of yeasts[M]. Amsterdam: Elsevier Science Publishers, 2011: 87-110.
[6] CIANI M, COMITINI F, MANNAZZU I, et al. Controlled mixed culture fermentation: a new perspective on the use of non-Saccharomyces yeasts in winemaking[J]. FEMS Yeast Res, 2010, 10(2): 123-333.
[7] JOLLY N P, ARELA C, RETORIUS I S. Not your ordinary yeast: non-Saccharomyces yeasts in wine production uncovered[J]. FEMS Yeast Res, 2014, 14(2): 215-237.
[8] STARMER W T, LACHANCE M A. Yeast ecology[M]. Amsterdam: Elsevier Science Publishers, 2011: 65-83.
[9] GAYEVSKIY V, GODDARD M R. Geographic delineations of yeast communities and populations associated with vines and wines in New Zealand[J]. ISME J, 2012, 6(7): 1281-1290.
[10] RENAULT P, MIOT-SERTIER C, MARULLO P, et al. Genetic characterisation and phenotypic variability in Torulaspora delbrueckii species: potential applications in the wine industry[J]. Int J Food Microbiol, 2009, 134(3): 201-210.
[11] HIERRO N, GONZALEZ A, MAS A, et al. Diversity and evolution of non-Saccharomyces yeast populations during wine fermentation: effect of grape ripeness and cold maceration[J]. FEMS Yeast Res, 2006, 6(1): 102-111.
[12]PRETORIUS I S. Tailoring wine yeast for the new millennium: novel approaches to the ancient art of winemaking[J]. Yeast, 2000, 16(8): 675-729.
[13]  ZAHAVI T, DROBY S, COHEN L, et al. Characterisation of the yeast flora on the surface of grape berries in Israel[J]. Vitis, 2002, 41(4): 203-308.
[14] LONGO E, CANSADO J, AGRELO D, et al. Effect of climatic conditions on yeast diversity in grape musts from Northwest Spain[J]. Am J Enol Viticult, 1991, 42(2): 141-144.
[15] COMBINA M, ELIA A, MERCADO L, et al. Dynamics of indigenous yeast populations during spontaneous fermentation of wines from Mendoza, Argentina[J]. Int J Food Microbiol, 2005, 99(3): 237-243.
[16] BISSON L F, KUNKEE R E. Microbial interactions during wine production[M]. New York: McGraw-Hill, 1991: 39-68.
[17] SWIEGERS J H, BARTOWSKY E J, HENSCHKE P A, et al. Yeast and bacterial modulation of wine aroma and flavour[J]. Aust J Grape Wine Res, 2005, 11(2): 139-173.
[18] CLEMENTE-JIMENEZ J F, MINGORANCE-CAZORLA L, MARTINEZ-RODRIGUEZ S, et al. Molecular characterization and oenological properties of wine yeasts isolated during spontaneous fermentation of six varieties of grape must[J]. Food Microbiol, 2004, 21(2): 149-155.
[19] PRETORIUS I S. The genetic analysis and tailoring of wine yeasts[M]. Berlin: Springer-Verlag, 2003: 99-141.
[20] CORDERO O R, UBEDA J F, BRIONES-PEREZ A I, et al. Characterization of the β-glucosidase activity produced by enological strains of non-Saccharomyces yeast[J]. J Food Sci, 2003, 68(8): 2564-2569.
[21] GARCIA A, CARCEL C, DULAU L, et al. Influence of a mixed culture with Debaryomyces vanriji and Saccharomyces cerevisiae on the volatiles of a Muscat wine[J]. J Food Sci, 2002, 67(3): 1138-1143.
[22] SADOUDI M, TOURDOT-MARECHAL R, ROUSSEAUX S, et al. Yeast-yeast interactions revealed by aromatic profile analysis of Sauvignon Blanc wine fermented by single or co-culture of non-Saccharomyces and Saccharomyces yeasts[J]. Food Microbiol, 2012, 32(2): 243-253.
[23] YANAI T, SATO M. Isolation and properties of β-glucosidase produced by Debaryomyces hansenii and its application in winemaking[J]. Am J Enol Viticult, 1999, 50(3): 231-235.
[24] SWANGKEAW J, VICHITPHAN S, BUTZKE C E, et al. Characterization of β-glucosidases from Hanseniaspora sp. and Pichia anomala with potentially aroma-enhancing capabilities in juice and wine[J]. World J Microb Biot, 2011, 27(2): 423-430.
[25] BAFFI M A, BEZERRA C D, ARVALO-VILLENA M, et al. Isolation and molecular identification of wine yeasts from a Brazilian vineyard[J]. Ann Microbiol, 2011, 61(1): 75-78.
[26] GONZALEZ-POMBO P, FARINA L, CARRAU F, et al. A novel extracellular β-glucosidase from Issatchenkia terricola: isolation, immobilization and application for aroma enhancement of white Muscat wine[J]. Proc Biochem, 2011, 46(1): 385-389.
[27] ARVALO-VILLENA M,   BEDA-IRANZO J, BRIONES-PREZ A. Enhancement of aroma in white wines using a β-glucosidase preparation from Debaryomyces pseudopolymorphus (A-77)[J]. Food Biotechnol, 2007, 21(2): 181-194.
[28] LLEIXJ, MARTN V, PORTILLO M D C, et al. Comparison of fermentation and wines produced by inoculation of Hanseniaspora vineae and Saccharomyces cerevisiae[J]. Front Microbiol, 2016, 7(3): 338.
[29] VIANA F, GIL J V, VALLES S, et al. Increasing the levels of 2-phenylethyl acetate in wine through the use of a mixed culture of Hanseniaspora osmophila and Saccharomyces cerevisiae[J]. Int J Food Microbiol, 2009, 135(1): 68-74.
[30] MOREIRA N, MENDES F, DE PINHO R G, et al. Heavy sulphur compounds, higher alcohols and esters production profile of Hanseniaspora uvarum and Hanseniaspora guilliermondii grown as pure and mixed cultures in grape must[J]. Int J Food Microbiol, 2008, 124(3): 231-
238.
[31] JOLLY N P, AUGUSTYN O P H, PRETORIUS I S. The role and use of non-Saccharomyces yeasts in wine production[J]. S Afr J Enol Viticult, 2006, 27(1):15-39.
[32] PRIOR B A, TOH T H, JOLLY N, et al. Impact of yeast breeding for elevated glycerol production on fermentation activity and metabolite formation in Chardonnay[J]. S Afr J Enol Viticult, 2000, 21(2): 92-99.
[33] CIANI M, MACCARELLI F. Oenological properties of non-Saccharomyces yeasts associated with wine-making[J]. World J Microb Biot, 1998, 14(2): 199-203.
[34] CIANI M, PICCIOTTI G. The growth kinetics and fermentation behaviour of some non-Saccharomyces yeasts associated with wine-making[J]. Biotechnol Lett, 1995, 17(11): 1247-1250.
[35] ENGLEZOS V, RANTSIOU K, TORCHIO F, et al. Exploitation of the non-Saccharomyces yeast Starmerella bacillaris (synonym Candida zemplinina) in wine fermentation: Physiological and molecular characterizations[J]. Int J Food Microbiol, 2015, 199(4): 33-40.
[36] GIARAMIDA P, PONTICELLO G, DI MAIO S, et al. Candida zemplinina for production of wines with less alcohol and more glycerol[J]. S Afr J Enol Viticult, 2013, 34(2): 204-211.
[37] ZARA G, MANNAZZU I, DEL CARO A, et al. Wine quality improvement through the combined utilisation of yeast hulls and Candida zemplinina/Saccharomyces cerevisiae mixed starter cultures[J]. Aust J Grape Wine Res, 2014, 20(2): 199-207.
[38] GOBBI M, COMITINI F, DOMIZIO P, et al. Lachancea thermotolerans and Saccharomyces cerevisiae in simultaneous and sequential co-fermentation: A strategy to enhance acidity and improve the overall quality of wine[J]. Food Microbiol, 2013, 33(2): 271-281.
[39] LAMBRECHTS M G, PRETORIUS I S. Yeast and its importance to wine aroma-A review[J]. S Afr J Enol Viticult, 2000, 21(1): 97-129.
[40] ROMANO P, SUZZI G. Higher alcohol and acetoin production by Zygosaccharomyces wine yeasts[J]. J Appl Bacteriol, 2008, 75(6): 541-545.
[41] 李 华. 葡萄酒的香气[J]. 酿酒, 1990(5): 5-9.
[42] CIANI M, FERRARO L. Combined use of immobilized Candida stellata cells and Saccharomyces cerevisiae to improve the quality of wines[J]. J Appl Microbiol, 1998, 859(2): 247-254.
[43] ANFANG N, BRAJKOVICH M, GODDARD M R. Co-fermentation with Pichia kluyveri increases varietal thiol concentrations in Sauvignon blanc[J]. Aust J Grape Wine Res, 2009, 15(1): 1-8.
[44] VERMEULEN C, GIJS L, COLLIN S. Sensorial contribution and formation pathways of thiols in foods; A review[J]. Food Rev Int, 2005, 21: 69-137.
[45] ZOTT K, THIBON C, BELY M, et al. The grape must non-Saccharomyces microbial community: impact on volatile thiol release[J]. Int J Food Microbiol, 2011, 151(2): 210-215.
[46] ROMANO P, SUZZI G. Origin and production of acetoin during wine yeast fermentation[J]. Appl Environ Microbiol, 1996, 62(2): 309-315.
[47] VIDAL S, FRANCIS L, WILLIAMS P, et al. The mouth-feel properties of polysaccharides and anthocyanins in a wine like medium[J]. Food Chem, 2004, 85(4): 519-525.
[48] MATURANO Y P, ASSOF M, FABANI M P, et al. Enzymatic activities produced by mixed Saccharomyces and non-Saccharomyces cultures: relationship with wine volatile composition[J]. Ant Leeuw, 2015, 108(5): 1-18.
[49] KUTYNA D R, VARELA C, HENSCHKE P A, et al. Microbiological approaches to lowering ethanol concentration in wine[J]. Trend Food Sci Technol, 2010, 21(6): 293-302.
[50] MAGYAR I, TTH T. Comparative evaluation of some oenological properties in wine strains of Candida stellata, Candida zemplinina, Saccharomyces uvarum and Saccharomyces cerevisiae[J]. Food Microbiol, 2011, 28(1): 94-100.
[51] GONZALEZ R, QUIRS M, MORALES P. Yeast respiration of sugars by non-Saccharomyces yeast species: a promising and barely explored approach to lowering alcohol content of wines[J]. Trend Food Sci Technol, 2013, 29(1): 55-61.
[52] ERTEN H, CAMPBELL I. The production of low-alcohol wines by aerobic yeasts[J]. J Inst Brew, 1997, 59(3): 207-215.
[53] CONTRERAS A, HIDALGO C, HENSCHKE P A, et al. Evaluation of non-Saccharomyces yeasts for the reduction of alcohol content in wine[J]. Appl Environ Microbiol, 2014, 80(5): 1670-1678.
[54] MORATA A, BENITO S, LOIRA I, et al. Formation of pyranoanthocyanins by Schizosaccharomyces pombe during the fermentation of red must[J]. Int J Food Microbiol, 2012, 159(1): 47-53.
[55] BENITO S, MORATA A, PALOMERO F, et al. Formation of vinylphenolic pyranoanthocyanins by Saccharomyces cerevisiae and Pichia guillermondii in red wines produced following different fermentation strategies[J]. Food Chem, 2011, 124(1): 15-23.

基金

内蒙古自治区科技创新引导奖励资金项目
PDF(712 KB)

650

Accesses

0

Citation

Detail

段落导航
相关文章

/