干化对酿酒葡萄品质的影响

张 伟1,刘 洋2,赵 裴2,白杨杨2,陈乔敏2,韩富亮2,3,4*

(1.商丘市农业信息服务中心,河南 商丘 476000;2.西北农林科技大学葡萄酒学院,陕西 杨凌 712100;3.陕西省葡萄与葡萄酒工程技术研究中心,陕西 杨凌 712100;4.西北农林科技大学(合阳)葡萄试验示范站,陕西 合阳 715300)

摘 要:贵腐酒、冰酒、稻草酒等通常采用干化葡萄原料进行酿造,适当的干化处理可显著改善或提高酿酒葡萄品质,这是酿造高品质葡萄酒有效的技术途径之一。该文对葡萄干化的常见方式、优缺点进行总结,从葡萄形态和物理特性、表皮和葡萄醪颜色、糖类和有机酸、花色苷和非花色苷多酚以及挥发性成分等方面分别综述干化对酿酒葡萄原料品质的影响,以期为提高干化葡萄酒的质量提供科学依据。

关键词:酿酒葡萄;干化;葡萄品质

酿酒葡萄干化,又称葡萄脱水,指葡萄在自然或人工辅助的光、热、风、微生物等条件下失去部分水分,改变果实形态和物理化学特性的过程[1-3]。包括贵腐酒、冰酒、稻草酒(Vin de Paille)、雪莉酒、圣酒(Vin Santo)在内的葡萄原料都经历了葡萄干化的过程[4-6]。葡萄干化可在采收前和采收后进行,贵腐酒的干化在采收前,稻草酒则在采收后[4]。干化过程中,葡萄表皮失水皱缩,组织结构及颜色质地发生变化,果粒也由坚挺饱满转为松软萎缩,果梗变脆并由青绿色逐渐变为灰褐色[7-10]。相应地,果实内的糖、酸[11]、挥发性化合物[12]、酚类物质[13]等都发生显著变化,干化葡萄酿造的葡萄酒颜色[14]、香气、口感[15]、陈酿能力[6]及营养价值[16]也明显改变。

干化的实质是葡萄果实细胞内的游离水分,在内外蒸气压差驱动下,向细胞外转移的过程。细胞内外的蒸气压差受葡萄内在和外部环境影响。内在因素主要包括葡萄品种差异、果粒大小、果皮及表面蜡质层厚度、表皮气孔开放程度等[2,17-19]。外部环境因素主要指的是环境温度、湿度及空气流速。一般来说,提高环境温度,降低环境湿度,增强空气流速能够增大蒸气压差,从而加快干化速度[20-21]

理解干化葡萄品质的变化规律和机理,掌握干化葡萄技术,对酿造高品质的葡萄酒具有重要的理论和实践意义。与其他工艺的葡萄酒相比,由干化葡萄原料酿造的葡萄酒通常具有独特的质量风格。本文对葡萄干化技术和优缺点,干化对葡萄形态、物理特性、非挥发性和挥发性成分的影响进行了总结,综述了干化对酿酒葡萄原料品质的影响,以期为提高干化葡萄品质提供科学依据和指导。

1 葡萄干化处理方式

根据干化场所和脱水驱动方式的差异,葡萄干化处理方式主要分为室外干化、室内阴干、设备辅助干化,以及化学辅助干化法等[22]

1.1 室外干化

室外干化,顾名思义是指在室外自然条件下进行的干化,根据是否在葡萄藤上进行分为在体和离体干化。通常,离体干化方式较为普遍,意大利、法国、西班牙、土耳其、希腊和塞浦路斯等地中海沿岸国家多采用该方法[6,15,23-24]。干化期内,这些地区降水稀少,气温较高,通风良好,有利于减少葡萄的霉变或损坏,缩短干化时间。以西班牙南部的蒙蒂利亚-莫里莱斯(Montilla-Moriles)地区为例,通常选择将葡萄平铺在覆盖当地草垫(称为Esparto)的平缓坡地(称为Paseras)上,接受阳光直接照射[11]。依据天气情况和所需糖度进行干化,整个过程大约持续5~10 d,最终得到的葡萄为深棕色,含糖量极高,具有独特的葡萄干风味[25]

室外干化易受天气条件影响,可控性不强。夜间露水或降水使葡萄表面湿润,更易霉变,并产生真菌毒素[20]。已有研究结果也证实,使用室外干化葡萄酿造的西班牙、土耳其和希腊自然甜酒中赭曲霉毒素A含量高于未干化的干型葡萄酒[14,26-27]。模拟日光干化试验(40 ℃和15 ℃每12 h交替一次)表明,与40 ℃恒温干化相比,室外干化的葡萄醪花色苷含量低,褐变程度高,这可能是由于低温时细胞水分蒸发停止,氧气进入,促进酚类物质氧化[28]

1.2 室内阴干

室内阴干在通风良好且无阳光直射的室内进行,采用自然风或者借助风扇通风,使葡萄自然脱水。干化时,葡萄通常被平铺在较浅的筐子或草席上,或悬挂于房梁或特制的葡萄架上干化,持续十几天至4个月不等[15,23,29]。在意大利西北部的卡卢索(Caluso),酿造保证法定产区级(Denominazione d'Origine Controllata e Garantita,DOCG)卡卢索黎明葡萄酒(Erbaluce di Caluso)的传统方法是将葡萄单层放置,并保留空隙,置于被称为“fruttaio”的室内缓慢干化,干化时间长达140余天[8]。在法国侏罗(Jura)酿造的稻草酒(Vin de paille),原产地命名保护(Appellation d'Origine Protégée,AOP)规定至少干化6周,实际干化时间可达3~5个月[4]

室内阴干法虽避免了室外干化气候因素的影响[30],可一定程度上控制干化速度,效果也能更好把控,但无法精确控制环境温度和湿度,干化速度慢、虫害和霉变污染仍成为限制该方法进一步推广与应用的难题。

1.3 设施辅助干化

设施辅助干化是近年来发展的新技术,环境温度、湿度和空气流速可根据需求准确调节[31]。它克服了强太阳辐射、阴雨天气制约、真菌毒素污染、鸟类昆虫捕食、干化速度不可控等室外干化存在的缺点,也避免了室内自然干化速度慢、易霉变、易滋生蝇虫等问题,具有干化速度可控和安全卫生的优点[28,32-35]。但该方法需要相应的设备和电力投入,一定程度上增加了生产成本[36]

1.4 化学辅助干化

使用化学辅助法可提高干化效率。葡萄表皮覆盖的致密蜡质层主要由三萜类物质—齐墩果酸(60%)组成,其结构可降低水分的蒸发[36-37],是抵御病原菌的屏障[38-39]。但蜡质层的存在也抑制了葡萄的干化速率,影响干化。化学物质浸泡可快速去除蜡质,增强水分蒸发和扩散效率,加速干化进程。常用的浸泡液有氢氧化钠溶液、含碳酸钾的油酸乙酯碱性乳状液(2.5%K2CO3+2%油酸乙酯)和橄榄油的碱性乳状液等。但是,化学辅助干化法也将导致感官品质下降[6,36]

2 干化处理对葡萄品质的影响

伴随着游离水分流失,干化处理导致葡萄内部组织结构、代谢途径和化学成分发生改变。葡萄果实细胞经历了从有氧呼吸到无氧呼吸的转变[2,11,40]:水分流失导致细胞结构变化,使细胞膜无法进行正常有氧呼吸所需的气体(O2、CO2等)运输。同时,干化刺激细胞消耗大量能量应对胁迫,无氧呼吸被激活用以提供能量[41]。因此,干化处理通过影响葡萄细胞形态、组织结构和生理代谢等影响葡萄品质。

2.1 干化处理对葡萄形态和物理特性的影响

干化失水导致葡萄果皮逐渐皱缩,弹性下降,硬度和脆性上升;果肉萎缩,果梗变脆易折断[1,11];葡萄的平均粒质量下降,皮占比和籽占比上升。研究表明,初采收时的葡萄表皮细胞排列有序,经干化处理后细胞破裂,内表皮的木葡聚糖、外表皮角质层成分和纤维素以及内外表皮的果胶发生重排[10]

干化处理对葡萄形态和物理特性的影响因葡萄品种和果皮颜色不同而有所差异。白色酿酒品种‘黎明’果皮分为绿色、金色和蓝色。干化后,蓝色果粒的果皮破碎力、破碎能和杨氏模量(抵抗形变能力)降低,而果皮厚度增大;金色果粒的果梗分离力和分离能最高,绿色果粒和蓝色果粒次之[8]。‘内比奥罗’葡萄干化过程中,种子力学属性与黄烷醇可提取量的相关性高于声学属性,而声学参数中的声能(Aet)与葡萄的延伸亚基酰化比率(Gext)和总酰化比率(Gtotal)呈显著相关[42]

2.2 干化处理对葡萄表皮和葡萄醪颜色的影响

干化处理使葡萄果皮和葡萄醪的颜色加深。研究表明,干化36 h即可使‘西拉’、‘丹魄’和‘美乐’葡萄醪色度上升[43]。同时,干化促进葡萄果皮细胞中的花色苷向葡萄醪扩散,醪液褐变指数(A420nm值)大幅度提高(5.6和3.8倍)[32]。葡萄醪的色彩学参数在干化前后也有所变化,明度(L*值)和红色(a*值)减少,黄色(b*值)、彩度(C*值)和色调(h*值)值增加,即干化的葡萄醪颜色更深、更红,但黄色色调也更强[44]

干化引起水分蒸发导致果皮细胞破裂,促进多酚氧化酶与底物接触,褐变反应加剧[32],是葡萄与葡萄醪颜色改变、风味质量损失和味道变化的主要原因[30]。FIGUEIREDOGONZÁLEZ M等[44]采用紫外-可见分光光度法和高效液相色谱-二极管阵列检测器-电喷雾质谱法分离天然甜葡萄酒中不同分子质量的褐变产物,发现中低分子质量的聚合物对褐变的贡献率高于大分子聚合物。

2.3 干化处理对葡萄糖类和有机酸的影响

干化过程中,葡萄果实水分蒸发导致化学成分浓缩,其中糖含量增加最为显著[33]。对红葡萄品种‘廷托雷拉歌海娜’的研究表明,充分成熟且健康的葡萄于浅塑料筐中干化83 d后,糖分可由225 g/L提高到464 g/L[44]。同时,葡萄总酸也受到影响,这与葡萄品种、干化方式、干化温度等多种因素有关。已有研究表明,干化处理提高了‘赤霞珠’、‘美乐’、‘西尼特丽’、‘墨伏罗’、‘萨朱’的滴定酸,而‘阿瓦娜’、‘内比奥罗’的滴定酸降低[35,45]。室内自然干化18 d的‘特雷比奥罗’,总酸含量降低,而设备辅助干化18 d后总酸升高[41]。PANCERI C P等[46]研究在受控条件下(7 ℃、35%的相对湿度和12 m3/s的气流)葡萄脱水过程对葡萄汁和葡萄酒有机酸组成的影响,发现从干葡萄中获得的葡萄汁含有高浓度的有机酸,且干化程度不同,有机酸组成不同。

2.4 干化处理对葡萄花色苷含量的影响

干化过程中,葡萄的花色苷含量受到浓缩效应和扩散效应的影响。此外,花色苷可能还参与降解、加成、聚合或缩合等多种反应[43,45]。对‘黑比诺’的研究发现,干化处理显著提高了以单位质量葡萄计算时葡萄果皮的花色苷含量,但对以平均每粒葡萄计算时的果皮花色苷含量无显著影响。这说明单位质量葡萄花色苷含量的增加是由于水分损失,而不是因为花色苷的重新生成[47]。同时,一些研究指出,花色苷在干化过程中可能发生降解反应,当扣除干化浓缩效应时,葡萄的花色苷含量反而降低[6]。也有研究发现,干化葡萄的花色苷含量没有显著变化[48]

研究表明,干化处理对葡萄花色苷的影响与花色苷种类有关。干化对于二甲花翠素-3-O-葡萄糖苷含量增加的促进作用更大,也可能促进吡喃花色苷等花色苷衍生物的形成[43]。例如,在干化‘美乐’和‘西拉’葡萄醪中发现吡喃花色苷Vitisin A和Vitisin B,以及花色苷与儿茶素通过甲基-亚甲基桥缩合形成的花色苷,这可能是由脂氧合酶和乙醇脱氢酶等酶参与形成[16]

2.5 干化处理对葡萄非花色苷多酚的影响

干化对非花色苷多酚的影响与葡萄品种和多酚种类密切相关。干化失水40%后,‘赤霞珠’葡萄汁中没食子酸、丁香酸、原儿茶酸、咖啡酸、对香豆酸和香草酸的含量显著增加。而相同失水度的‘美乐’葡萄汁中除咖啡酸含量显著增加外,没食子酸、丁香酸、原儿茶酸、对香豆酸、鞣花酸、阿魏酸和香草酸含量都显著降低。且酚酸增加的百分比低于失水率,表明部分酚酸被过氧化物酶和多酚氧化酶氧化,并可能参与了辅色、聚合或降解反应[45]。对白色葡萄品种‘墨伏罗’和‘西尼特丽’的研究发现,干化处理对羟基苯甲酸含量增加的影响高于浓度效应。其中,在‘墨伏罗’葡萄中,没食子酸己糖苷异构体以及丁香酸葡萄糖苷增幅最高;在‘西尼特丽’葡萄中,香草醇葡萄糖苷和没食子酸己糖苷的增幅最为显著[1]。干化处理也能够提高‘佩德罗-希梅内斯’和‘霞多丽’葡萄中儿茶素和表儿茶素的含量[45],但是‘琼瑶浆’葡萄汁中表儿茶素含量显著降低[18]

干化速度和干化失水程度也影响葡萄非花色苷多酚的含量。相同干化程度下,快速干化时葡萄皮槲皮素的含量高于缓慢干化。当失水程度由10%提高到30%时,葡萄皮中槲皮素含量反而降低,但仍稍高于干化初[48]。作为一种非生物胁迫,干化处理也会提高葡萄果皮白藜芦醇的含量。研究表明[49],干化前热处理(45 ℃)36 h的效果更好(58 d后白藜芦醇含量达到34.8 μg/g果皮),单独的热处理反而会降低其含量。BONGHI C等[48]也观察到白藜芦醇含量的提高,但是白藜芦醇苷含量没有增加,这说明负责白藜芦醇糖基化的酶活性受干化处理影响较小。干化处理也会降低葡萄皮和葡萄籽中原花青素的含量和平均聚合度,当干化脱水程度由10%提高到30%时,葡萄皮原花青素B1和B2含量降幅更大(约为65%)。

干化过程影响葡萄非花色苷多酚的基因表达。浆果脱水过程中,类黄酮途径的几个关键基因除黄酮醇合成酶及MybB转录因子被诱导外,查尔酮合成酶(chalcone synthase,CHS)、黄烷酮3-羟化酶(flavanone 3-hydroxylase,F3H)、无色花青素双加氧酶(leucoanthocyanidin dioxygenase,LDOX)和MybA转录因子显著下调[48],黄酮醇和反式白藜芦醇浓度增加,黄烷-3-醇浓度下降。

干化温度和程度也影响芪合成酶的基因表达。干化温度为10 ℃和20 ℃时,基因相对表达量上调,而温度升至30 ℃时,表达量下降[7],这可能影响到芪类化合物如白藜芦醇的合成。ROSSO M D等[13]研究发现,干化首月芪类化合物大量合成,次月保持稳定或略有降低。葡萄素(ε-viniferin)在干化期间不断增加,并可作为干化进程的监测指标。

2.6 干化处理对葡萄挥发性成分的影响

干化处理影响葡萄的挥发性成分和香气特征。FRANCO M等[11]研究日光干化对葡萄中36种挥发性化合物的影响,发现仅正丁醇和异戊醇无差异,而C6化合物如反式-2-己烯-1-醇、反式-2-己烯醛、反式-3-己烯-1-醇、顺式-3-己烯-1-醇和己酸在新鲜葡萄汁中含量较高,干化后含量下降或未被检出;且干化葡萄果香、甜味和烘烤系列气味加重,草本气味降低,5-甲基糠醛、2-苯乙醇、γ-丁内酯、γ-己内酯含量显著上升。将‘切萨内赛’葡萄置于10 ℃、45%的相对湿度和1.5 m/s的空气中脱水,连续6周直至质量损失达37%。苯类化合物、去甲异戊二烯、萜烯醇和C6化合物表现出较大的变化,但变化程度与其所处果皮层有关[50]。干化处理‘廷托雷拉歌海娜’葡萄发现,游离态挥发性化合物中,苯甲醛、异戊醇和愈创木酚的浓度增幅最大;结合态挥发性化合物中,具有焦糖、花香、酚和燃烧气味等香气特征的苯甲酸、异戊醇和香草酸乙酯浓度显著上升[51]

干化处理的方式和温度影响葡萄的挥发性物质。室外干化和设备辅助干化均能提升葡萄焦糖味和花香,且设备辅助干化的葡萄挥发性化合物的气味活性值(ordor activity values,OAVs)高于室外干化葡萄[32]。同时,更低温度的冻干处理能够有效保存葡萄中的挥发性物质,当干化温度升至10 ℃时,原料中醛类和萜烯醇类的含量较高,20 ℃时葡萄的挥发性化合物以醇类和酯类为主,60 ℃则导致大部分挥发性物质损失[12,53]。当葡萄处于阳光强烈、温度较高的环境中干化时,与葡萄品种相关的芳香化合物被氧化,仅留下干无花果、干杏子和蜂蜜等香气,品种风格丧失。因此干化过程中,需适当降低干化温度和相对湿度,避免过高的空气流速,以减少挥发性化合物的损失[54]

3 结论与展望

葡萄干红显著影响葡萄的外观形态、葡萄糖、有机酸、酚类等物质的含量,影响葡萄原料的品质。设备辅助干化优于传统的干化方法,特别是在成熟期多雨的葡萄酒产区。在多雨地区,对未成熟葡萄提前采收并进行脱水,可避免气候带来的原料质量下降与经济损失。干化高品质葡萄酒通常具有独特的风味和良好的陈酿潜力,随着人民收入和生活水平的不断提高,干化高品质葡萄酒未来具有良好的发展潜力和广阔的市场前景。因此,加强对干化葡萄及葡萄酒的研究,为消费者提供高品质的干化葡萄酒产品,对于促进葡萄酒行业的健康可持续发展有重要意义。

参考文献:

[1] CONSTANTINOU S,GÓMEZ-CARAVACA A M,GOULAS V,et al.Metabolic fingerprinting of must obtained from sun-dried grapes of two indigenous Cypriot cultivars destined for the production of'Commandaria':A protected destignation of origin product[J].Food Res Int,2017,100:469-476.

[2] COSTANTINI V,BELLINCONTRO A,SANTIS D D,et al.Metabolic changes of Malvasia grapes for wine production during postharvest drying[J].J Agr Food Chem,2006,54(9):3334-3340.

[3]RIZZINI F M,BONGHI C,TONUTTI P.Postharvest water loss induces marked changes in transcript profiling in skins of wine grape berries[J].Postharvest Biol Tec,2009,52(3):247-253.

[4] MENCARELLI F,TONUTTI P.Sweet,reinforced and fortified wines:Grape biochemistry,technology and vinification[M].New Jersey:John Wiley&Sons,Ltd.,2013:277-284.

[5] DANKÓ T,SZELÉNYI M,JANDA T,et al.Distinct volatile signatures of bunch rot and noble rot[J].Physiol Mol Plant P,2021,114:101626.

[6]FIGUEIREDO-GONZÁLEZM,CANCHO-GRANDEB,SIMAL-GÁNDARA J.Effects on colour and phenolic composition of sugar concentration processes in dried-on-or dried-off-vine grapes and their aged or not natural sweet wines[J].Trends Food Sci Tech,2013,31(1):36-54.

[7] MENCARELLI F,BELLINCONTRO A,NICOLETTI I,et al.Chemical and biochemical change of healthy phenolic fractions in wine grape by means of postharvest dehydration[J].J Agr Food Chem,2010,58(13):7557-7564.

[8]ROLLE L,GIORDANO M,GIACOSA S,et al.CIEL*a*b*parameters of white dehydrated grapes as quality markers according to chemical composition,volatile profile and mechanical properties[J].Anal Chim Acta,2012,732:105-113.

[9] ROLLE L,GIACOSA S,RÍO SEGADE S,et al.Influence of different thermohygrometric conditions on changes in instrumental texture properties and phenolic composition during postharvest withering of 'Corvina'winegrapes'(Vitis vinifera L.)[J].Dry Technol,2013,31(5):549-564.

[10]FASOLI M,DELL ANNA R,AMATO A,et al.Active rearrangements in the cell wall follow polymer concentration during postharvest withering in the berry skin of Vitis vinifera cv.Corvina[J].Plant Physiol Biochem,2019,135:411-422.

[11]FRANCO M,PEINADO R A,MEDINA M,et al.Off-vine grape drying effect on volatile compounds and aromatic series in must from Pedro Ximénez grape variety[J].J Agr Food Chem,2004,52(12):3905-3910.

[12]TORRES C,DÍAZ-MAROTO M C,HERMOSÍN-GUTIÉRREZ I,et al.Effect of freeze-drying and oven-drying on volatiles and phenolics composition of grape skin[J].Anal Chim Acta,2010,660(1-2):177-182.

[13]ROSSO M D,SOLIGO S,PANIGHEL A,et al.Changes in grape polyphenols(V.vinifera L.)as a consequence of post-harvest withering by highresolution mass spectrometry:Raboso Piaveversus Corvina[J].J Mass Spectrom,2016,51(9):750-760.

[14]LABRINEA E P,NATSKOULIS P I,SPIROPOULOS A E,et al.A survey of ochratoxin a occurence in Greek wines[J].Food Addit Contam:Part B,2011,4(1):61-66.

[15]GONZÁLEZ-ÁLVAREZ M,NOGUEROL-PATO R,GONZÁLEZ-BARREIRO C,et al.Sensory description of sweet wines obtained by the winemaking procedures of raisining,botrytisation and fortification[J].Food Chem,2014,145:1021-1030.

[16] MARQUEZ A,DUEÑAS M,SERRATOSA M P,et al.Formation of vitisins and anthocyanin-flavanol adducts during red grape drying[J].J Agr Food Chem,2012,60(27):6866-6874.

[17] CORONA O,PLANETA D,BAMBINA P,et al.Influence of different dehydration levels on volatile profiles,phenolic contents and skin hardness of alkaline pre-treated grapes cv musket of Alexandria(Vitis vinifera L.)[J].Foods,2020,9(5):666.

[18] SERRATOSA M P,MARQUEZ A,MOYANO L,et al.Chemical and morphological characterization of Chardonnay and Gewürztraminer grapes and changes during chamber-drying under controlled conditions[J].Food Chem,2014,159:128-136.

[19]ZENONI S,FASOLI M,GUZZO F,et al.Disclosing the molecular basis of the postharvest life of berry in different grapevine genotypes[J].Plant Physiol,2016,172(3):1821-1843.

[20]SERRATOSA M P,LOPEZ-TOLEDANO A,MILLAN C,et al.Changes of ochratoxin A in grapes inoculated with Aspergillus carbonarius and subjected to chamber-drying under controlled conditions[J].J Agr Food Chem,2010,58(22):11907-11912.

[21] BINGOL G,ROBERTS J S,BALABAN M O,et al.Effect of dipping temperature and dipping time on drying rate and color change of grapes[J].Dry Technol,2012,30(6):597-606.

[22] SANMARTIN C,MODESTI M,VENTURI F,et al.Postharvest water loss of wine grape:When,what and why[J].Metabolites,2021,11(5):318.

[23] FILIPPIS F,APONTE M,PIOMBINO P,et al.Influence of microbial communities on the chemical and sensory features of Falanghina sweet passito wines[J].Food Res Int,2019,120:740-747.

[24]FADHEL A,KOOLI S,FARHAT A,et al.Study of the solar drying of grapes by three different processes[J].Desalination,2005,185(1-3):535-541.

[25] LÓPEZ DE LERMA N,GARCÍA MARTÍNEZ T,MORENO J,et al.Sweet wines with great aromatic complexity obtained by partial fermentation of must from Tempranillo dried grapes[J].Eur Food Res Technol,2012,234(4):695-701.

[26] BURDASPAL P,LEGARDA T.Occurrence of ochratoxin A in sweet wines produced in Spain and other countries[J].Food Addit Contam,2007,24(9):976-986.

[27] VAR I,KABAK B.Occurrence of ochratoxin A in Turkish wines[J].Microchem J,2007,86(2):241-247.

[28] MARQUEZ A,PEREZ-SERRATOSA M,VARO M A,et al.Effect of temperature on the anthocyanin extraction and color evolution during controlled dehydration of Tempranillo grapes[J].J Agr Food Chem,2014,62(31):7897-7902.

[29]NOGUEROL-PATO R,GONZÁLEZ-ÁLVAREZ M,GONZÁLEZ-BARREIRO C,et al.Aroma profile of Garnacha Tintorera-based sweet wines by chromatographic and sensorial analyses[J].Food Chem,2012,134(4):2313-2325.

[30]SERRATOSA M P,LOPEZ-TOLEDANO A,MERIDA J,et al.Changes in color and phenolic compounds during the raisining of grape cv.Pedro ximenez[J].J Agr Food Chem,2008,56(8):2810-2816.

[31]TORRESI S,FRANGIPANE M T,GARZILLO A M V,et al.Effects of a β-glucanase enzymatic preparation on yeast lysis during aging of traditional sparkling wines[J].Food Res Int,2014,55:83-92.

[32]MARQUEZ A,SERRATOSA M P,LOPEZ-TOLEDANO A,et al.Colour and phenolic compounds in sweet red wines from Merlot and Tempranillo grapes chamber-dried under controlled conditions[J].Food Chem,2012,130(1):111-120.

[33]OSSOLA C,GIACOSA S,TORCHIO F,et al.Comparison of fortified,sfursat,and passito wines produced from fresh and dehydrated grapes of aromatic black cv.Moscato nero (Vitis vinifera L.)[J].Food Res Int,2017,98:59-67.

[34]PANCERI C P,GOIS J S,BORGES D L G,et al.Effect of grape dehydration under controlled conditions on chemical composition and sensory characteristics of Cabernet Sauvignon and Merlot wines[J].LWT-Food Sci Technol,2015,63(1):228-235.

[35] TORCHIO F,URCAN D E,LIN L,et al.Influence of different withering conditions on phenolic composition of Avanà,Chatus and Nebbiolo grapes for the production of 'Reinforced' wines[J].Food Chem,2016,194:247-256.

[36]SERRATOSA M P,LOPEZ-TOLEDANO A,MEDINA M,et al.Drying of Pedro Ximenez grapes in chamber at controlled temperature and with dipping pretreatments.Changes in the color fraction[J].J Agr Food Chem,2008,56(22):10739-10746.

[37]ORBÁN N,KOZÁK I O,DRÁVUCZ M,et al.LC-MS method development to evaluate major triterpenes in skins and cuticular waxes of grape berries[J].Int J Food Sci Technol,2009,44(4):869-873.

[38] CASADO C G,HEREDIA A.Structure and dynamics of reconstituted cuticular waxes of grape berry cuticle(Vitis vinifera L.)[J].J Exp Bot,1999,50(331):175-182.

[39]YANG M Y,LUO Z S,GAO S N,et al.The chemical composition and potential role of epicuticular and intracuticular wax in four cultivars of table grapes[J].Postharvest Biol Tec,2021,173:111430.

[40] CONDE A,SOARES F,BREIA R,et al.Postharvest dehydration induces variable changes in the primary metabolism of grape berries[J].Food Res Int,2018,105:261-270.

[41]BELLINCONTRO A,SANTIS D,BOTONDI R,et al.Different postharvest dehydration rates affect quality characteristics and volatile compounds of Malvasia,Trebbiano and Sangiovese grapes for wine production[J].J Sci Food Agr,2004,84(13):1791-1800.

[42]SEGADE S R,TORCHIO F,GERBI V,et al.Impact of postharvest dehydration process of wine grapes on mechanical and acoustic properties of the seeds and their relationship with flavanol extraction during simulated maceration[J].Food Chem,2016,199:893-901.

[43]MARQUEZ A,SERRATOSA M P,MERIDA J.Anthocyanin evolution and color changes in red grapes during their chamber drying[J].J Agr Food Chem,2013,61(41):9908-9914.

[44] FIGUEIREDO-GONZÁLEZ M,CANCHO-GRANDE B,SIMAL-GÁNDARA J.Evolution of colour and phenolic compounds during Garnacha Tintorera grape raisining[J].Food Chem,2013,141(3):3230-3240.

[45]PANCERI C P,GOMES T M,DE GOIS J S,et al.Effect of dehydration process on mineral content,phenolic compounds and antioxidant activity of Cabernet Sauvignon and Merlot grapes[J].Food Res Int,2013,54(2):1343-1350.

[46] PANCERI C P,BORDIGNON-LUIZ M T.Off-vine grape dehydration process under controlled conditions:Effect on organic acid content of musts and wines[J].Acta Hortic,2017,1188:391-398.

[47] MORENO J J,CERPA-CALDERÓN F,COHEN S D,et al.Effect of postharvest dehydration on the composition of Pinot Noir grapes (Vitis vinifera L.)and wine[J].Food Chem,2008,109(4):755-762.

[48] BONGHI C,RIZZINI F M,GAMBUTI A,et al.Phenol compound metabolism and gene expression in the skin of wine grape(Vitis vinifera L.) berries subjected to partial postharvest dehydration[J].Postharvest Biol Tec,2012,67:102-109.

[49] VERSARI A,PARPINELLO G P,TORNIELLI G B,et al.Stilbene compounds and stilbene synthase expression during ripening,wilting,and UV treatment in grape cv.corvina[J].J Agr Food Chem,2001,49(11):5531-5536.

[50]CENTIONI L,TIBERI D,PIETROMARCHI P,et al.Effect of postharvest dehydration on content of volatile organic compounds in the epicarp of Cesanese grape berry[J].Am J Enol Vitic,2014,65(3):333-340.

[51]NOGUEROL-PATO R,GONZÁLEZ-ÁLVAREZ M,GONZÁLEZ-BARREIRO C,et al.Evolution of the aromatic profile in Garnacha Tintorera grapes during raisining and comparison with that of the naturally sweet wine obtained[J].Food Chem,2013,139(1-4):1052-1061.

[52]RUIZ M J,ZEA L,MOYANO L,et al.Aroma active compounds during the drying of grapes cv.Pedro Ximenez destined to the production of sweet Sherry wine[J].Eur Food Res Technol,2010,230(3):429-435.

[53]SANTONICO M,BELLINCONTRO A,DE SANTIS D,et al.Electronic nose to study postharvest dehydration of wine grapes[J].Food Chem,2010,121(3):789-796.

[54]MENCARELLI F,BELLINCONTRO A.Recent advances in postharvest technology of the wine grape to improve the wine aroma[J].J Sci Food Agr,2020,100(14):5046-5055.

Effect of drying on the quality of wine grapes

ZHANG Wei1,LIU Yang2,ZHAO Pei2,BAI Yangyang2,CHEN Qiaomin2,HAN Fuliang2,3,4*
(1.Shangqiu Agricultural Information Service Center,Shangqiu 476000,China;2.College of Enology,Northwest A&F University,Yangling 712100,China;3.Shaanxi Engineering Research Centre for Viti-viniculture,Yangling 712100,China;4.Heyang Experimental and Demonstrational Station for Viticulture,Northwest A&F University,Heyang 715300,China)

Abstract:Dried grape is used to make noble rot wine,ice wine,straw wine,suitble drying treatment can significantly improve quality of wine grapes,which is one of the effective technology to make high-quality wine.Common ways,advantages and disadvantages of grape drying were summarized,the effects of drying on the quality of wine grape were elaborateed from several aspects,including the morphology and physical characteristics of grapes,the color of skin and mash,sugars and organic acids,anthocyanins and non-anthocyanin polyphenols,and volatile component,so as to provide a scientific basis for improving the quality of wine produced by dried grape.

Key words:wine grapes;drying;grape quality

中图分类号:TS201.6

文章编号:0254-5071(2022)03-0013-05

doi:10.11882/j.issn.0254-5071.2022.03.003

引文格式:张伟,刘洋,赵裴,等.干化对酿酒葡萄品质的影响[J].中国酿造,2022,41(3):13-17.

收稿日期:2021-08-12

修回日期:2021-10-18

基金项目:“十三五”国家重点研发计划(2016YFD0400500);陕西省重点研发资助项目(2017NY-184)

作者简介:张 伟(1977-),男,高级农艺师,本科,研究方向为园艺采后技术研究与推广。

*通讯作者:韩富亮(1979-),男,副教授,博士,研究方向为葡萄酒营养健康与酿造。